

Adrenergic Drugs

Dr Sara Adil BDS, MSc

Agenda

Adrenergic receptors

Adrenergic Neurotransmitters

Classification of Adrenergic Drugs

Adrenergic Agonist

Adrenergic Antagonist

Introduction

- The adrenergic drugs affect adrenoceptors that are stimulated by norepinephrine (noradrenaline) or epinephrine (adrenaline).
- Drugs that <u>activate</u> adrenergic receptors are termed sympatho<u>mimetics</u>, and drugs that <u>block</u> the activation of adrenergic receptors are termed <u>sympatholytic</u>.

Adrenergic Receptors

 $\alpha_1 - \alpha_2$ $\beta_1 - \beta_2 - \beta_3$

Sunday, November 6, 2022

Sunday, November 6, 2022

a Adrenergic Receptors

β Adrenergic Receptors

αΙ	α2	βI	β2	β3
Blood vessel	CNS	Tachycardia		Adipose
(contraction)	Pre-synaptic neuron NA release	EGAL		tissue
S.M of GIT (relaxation)	Platelets	Kidney- juxta glomerular cells	Blood vessels of skeletal muscle & coronary A. (Vasodilation)	
S.M of Bladder, uterus Eye, Prostatic urethra (contraction)	Pancreas Dr. Sarah Adil		S.M of GIT Bladder, Eye, uterus (Relaxation)	

Classification of Adrenergic Drugs

Classification Based on the mechanism of action, adrenergic agonists are classified to...

Direct-acting Agonists

They directly bind to & activate adrenoceptors.

Epinephrine, Norepinephrine.

Indirect-acting Agonists

- They adrenergic transmission indirectly by
- a. Displace norepinephrine from the storage vesicle Amphetamine,
- b. Inhibit norepinephrine re-uptake Tricyclic antidepressant, Cocaine.
- c. Inhibit metabolism, MAO inhibitor

Mixed-action Agonists

Both stimulate <u>adrenoceptors</u> <u>directly</u> and enhance the <u>release</u> of norepinephrine from the adrenergic neuron.

Ephedrine, pseudoephedrine.

Catecholamines VS Non-catecholamines

CATECHOLAMINES

- like epinephrine, norepinephrine, isoproterenol, and dopamine
- Imetabolized by catechol-O
 methyltransferase (COMT) and monoamine
 oxidase (MAO)
- Short-half live
- Cannot use orally

Cannot cross blood-brain barrier (polar)

NON-CATECHOLAMINES

like phenylephrine, ephedrine, and amphetamine. \Box they don't \longrightarrow have a prolonged duration of action Ionger half lives Can use orally Can cross the BBB (lipid soluble).

Epinephrine/ Adrenaline

ACTIONS

Tachycardia

- \Box Epinephrine interacts with both α and β receptors.
- \Box At low doses β 2 effects (vasodilation) on the vascular system predominate,
- $\Box At high doses \alpha I effects$ (vasoconstriction) are strongest.

- I. Cardiovascular:
- Strengthens the contractility of the myocardium (positive inotropic: β I action)
- Increases heart rate of contraction (positive chronotropic: β | action)

Epinephrine/ Adrenaline

Activates β | receptors in the kidney to cause renin release.

Constricts arterioles in the skin, mucous membranes, and viscera (αl effects),

dilates vessels going to the liver and skeletal muscle (β 2 effects). The cumulative effect of adrenaline is

- An increase in systolic blood pressure SBP
- Slight decrease in diastolic pressure DBP

Epinephrine/ Adrenaline

ACTIONS

2. Respiratory: powerful bronchodilation by acting directly on bronchial smooth muscle (β2 action).

2. Hyperglycemia: Epinephrine has a significant hyperglycemic effect (blood glucose) because of

 \checkmark increased glycogenolysis in the liver (β 2 effect),

 \checkmark increased release of glucagon (β 2 effect),

✓ decreased release of insulin (α 2 effect).

Epinephrine/Adrenaline Pharmacokinetics

- I. Epinephrine has a rapid onset
- 2. short duration of action.
 - Because it is rapidly metabolized by MAO and COMT

The preferred route is intramuscular (I.M at the anterior thigh) due to rapid absorption.

□ In emergency situations, epinephrine is given intravenously (IV) for the most rapid onset of action.

It may also be given subcutaneously, by endotracheal tube,

□ by inhalation.

Epinephrine: Therapeutic uses:

- a. Acute Bronchospasm (acute asthma)
- b. Anaphylactic shock
- c. Cardiac arrest:
- d. As an adjunct to local anesthesia in dentistry.

Local Anaesthetics (L.A): Local anaesthetic solutions in dentistry may contain low concentrations (for example, 1:100,000 parts) of epinephrine to:

- I. increases the duration of local anaesthesia
 (L.A) action,
- II. Reduce systemic toxicity of L.A
- III. reduce bleeding as well

Norepinephrine/ Noradrenaline

- □ Is selective for α receptor (α I = α 2 > β I).
- Norepinephrine causes both systolic and diastolic blood pressures increase due to intense vasoconstriction of most vascular beds (αl effect).

Isoproterenol:

- \Box a direct-acting <u>synthetic</u> <u>catecholamine</u> that stimulates both β , β receptors.
- \Box Heart: increasing heart rate, contractility, and cardiac output (β I)
- also dilates the arterioles of skeletal muscle (β2 effect), resulting in decreased peripheral resistance
- \Box Lungs: a potent bronchodilator (β 2 effect).

Dopamine:

- **Stimulate both (α, β receptors).**
- In addition, DI and D2 dopaminergic receptors in renal vascular beds, where binding of dopamine produces vasodilation..
- Dopamine is the drug of choice for cardiogenic and septic shock and is given by continuous infusion.

Non-catecholamines adrenergic agonists

- \Box like phenylephrine, ephedrine, and amphetamine.
- \Box they don't metabolize by COMT or MOA
- have a prolonged duration of action
- Can use orally
- \Box Can cross the BBB (lipid soluble).

αl-Agonist α2-Agonist

Phenylephrine/ al-Agonist

□ Is a direct-acting synthetic adrenergic agonists

 \Box Binds primarily to α | receptors.

Phenylephrine is a vasoconstrictor that raises both systolic and diastolic blood pressures.

□<u>Uses</u>

- I. as a nasal decongestant
- 2. Ophthalmic solutions for mydriasis.

Clonidine: α2 agonist

Clonidine acts centrally on presynaptic $\alpha 2$ receptors to produce inhibition of sympathetic vasomotor centres, decreasing sympathetic outflow to the periphery.

Uses:

- 1. as centrally acting anti-hypertensive drugs.
- 2. To reduce withdrawal symptoms of opiates, tobacco smoking, and benzodiazepines.

The side effects include: lethargy, sedation, constipation and xerostomia

Dobutamine:/ **βI-Agonist**

\Box Is a selective β l agonist. (heart)

Increases cardiac rate and output but without increasing oxygen consumption of the myocardium, a <u>major advantage</u> over other sympathomimetic drugs.

Uses.

- Congestive heart failure
- Cardiogenic shock.

Salbutamol and Salmeterol/ **B2-Agonist**

 \Box Is a selective $\beta 2$ agonist. (lung)

Uses:

Bronchial asthma

Chronic obstructive coronary disease (COPD).

Indirect-Acting Adrenergic Agonists

Act by stimulating the release, inhibiting the reuptake, or inhibiting the degradation of epinephrine or norepinephrine. so

They potentiate the effects of epinephrine or norepinephrine produced endogenously but do not directly affect postsynaptic receptors (Amphetamine, tyramine, and cocaine).

Amphetamine:

□ Is an indirect-acting adrenergic drug that causes the release of stored norepinephrine,

☐ its main effect is CNS stimulation ______ Euphoria ______ addiction (drug abuse).

Therapeutic uses: in attention deficit hyperactivity disorder (ADHD), CNS stimulatory effects, suppression of appetite.

Cocaine

Block re-uptake of catecholamine at the adrenergic nerve terminal.

- **Cocaine can affect:**
- CNS: general stimulation, euphoria, dysphoria, followed by depression. (drug abuse)
- CVS: in small doses, it causes bradycardia, and <u>at higher doses</u> tachycardia; vasoconstriction; and myocardial infarction.
- Can cause local anaesthesia by blocking Na+ channels.

Ephedrine and pseudoephedrine:

- Mixed-Action Adrenergic Agonists.
- They not only enhance the release of stored norepinephrine from nerve endings but also directly stimulate both α and β receptors.
- Thus, a wide variety of adrenergic actions ensue that are similar to those of epinephrine, although less potent.

Ephedrine and pseudoephedrine:

Since Ephedrine produces a mild stimulation of the CNS. This increases alertness decreases fatigue and prevents sleep, It also improves athletic performance.

Oral pseudoephedrine is primarily used as nasal decongestant.

The way to get started is to quit talking and begin doing.

Walt Disney

Adrenergic Antagonísts

also called adrenergic blockers or sympatholytic drugs.

□ They bind to adrenoceptors but do not trigger the usual effects.

□ The adrenergic antagonists are classified

- β blockers
- $\checkmark \alpha$ blockers
- ✓ Drug act pre-synaptically
- a. Storage inhibitor (reserpine)
- b. Release inhibitor (guanethidine)

Classification of adrenergic receptor antagonists. Drugs marked by an asterisk (*) also block a₁ receptors.

α-Adrenergic blocking agents:

Phenoxybenzamine:

- \Box Non –selective α blocker (α 1, α 2)
- Irreversible blocker, long-acting (4 days)

Uses: pheochromocytoma (**Phenoxybenzamine + propranolol**)

α-Adrenergic blocking agents:

Prazosin

Selective Q1 blocker

- **Uses:**
- □ hypertension
- □ acute heart failure
- **Benign prostate hypertrophy**

Non-selective α blockers – Side effects

DRUG SUMMARY TABLE: Adrenoceptor Blockers

Subclass	Mechanism of Action	Clinical Applications		
Nonselective Colorkers				
Phentolamine	Competitive pharma- cologic antagonism at a receptors	Pheochromocytoma, antidote to overdose of α agonists		
Phenoxybenzamine	Irreversible (cova- lent) binding to α receptors	Pheochromocytoma, carci- noid, mastocytosis, Raynaud's phenomenon		
Alpha ₁ -selective blockers				
Prazosin	Competitive antago-	Hypertension, benign prostatic		

Doxazosin, terazosin: like prazosin; longer duration of action (12–24 h)

Tamsulosin, silodosin: like prazosin, approved only for benign prostatic hyperplasia

Alpha₂-selective blockers

Yohimbine

Competitive antagonism at α_2 receptors Obsolete use for erectile dysfunction • research use

- Non-selective β1 and β2 antagonists (e.g. propanolol, Nadalol, Timolol, Pindolol).
- β1-selective blocker (e.g. Metoprolol, Atenolol, Bisoprlol, Esmolol, Acebutolol, Betaxolol).
- Non-selective or selective β-blockers with vasodilating effect (due to α1blocking effect) Labetalol and carvedilol: (Antagonists of both α and β)

Therapeutic uses of β-blockers

- **I.** Hypertension: β-Blockers are useful for all grades of hypertension. These drugs are preferred especially in patients with coexisting angina, myocardial infarction or cardiac arrhythmias.
- 2. Angina pectoris and MI: By reducing myocardial O2 demand by decreasing heart rate, myocardial contractility and blood pressure.
- 3. Atrial arrhythmias

Therapeutic uses of β -blockers

- Congestive cardiac failure: Chronic use of β-blockers such as carvedilol, metoprolol and bisoprolol has shown to reduce the mortality rate in chronic heart failure.
- 2. Pheochromocytoma: β-Blockers are used to control the cardiac manifestations of pheochromocytoma but should <u>not be given</u> <u>alone.</u>
- **3. Glaucoma:** By decreasing the IOP. Timolol is the most frequently used β-blocker in glaucoma.

Therapeutic uses of β-blockers

- 1. Prophylaxis of migraine: Propranolol, atenolol and metoprolol are effective in reducing the frequency of migraine headaches. The mechanism is not known.
- 2. Hyperthyroidism: The signs and symptoms of hyperthyroidism such as tachycardia, palpitation, tremor, anxiety, etc. are reduced due to the blockade of β-receptors. Propranolol is used in thyroid storms.
- 3. Essential tremors: Oral propranolol
- **4.** Acute anxiety states: β-Blockers are useful in controlling the symptoms of acute anxiety such as palpitation, tachycardia, tremor, sweating,

Nonselective a blockers

Propranolol

Atenolol

Competitive block of β receptors, local anesthetic effect Angina, arrhythmias (treatment and prophylaxis), hypertension, thyrotoxicosis, tremor, stage fright, migraine

Timolol, betaxolol, others: lack local anesthetic action; useful in glaucoma *Pindolol:* partial agonist action; possibly safer in asthma *Nadolol:* like propranolol but longer action (up to 24 h) and less CNS effect

Beta₁-selective blockers

Competitive block of	Hypertension, angina,
β ₁ receptors	arrhythmias

Esmolol: IV agent for perioperative and thyroid storm arrhythmias, hypertensive emergency *Metoprolol:* like atenolol, oral, shown to reduce mortality in heart failure *Nebivolol:* oral β₁-selective blocker with additional nitric oxide-dependent vasodilating action

Beta ₂ -selective blockers Butoxamine	Gompetitive block of β ₂ receptors	None • research use only	_	
Alpha + beta blockers				
Labetalol	Four isomers; 2 bind and block both α and β receptors	Hypertension, hypertensive emergencies (IV)		
Carvedilol: like labetalol, 2 isomers; shown to reduce mortality in heart failure				

	DRUG	RECEPTOR SPECIFICITY	THERAPEUTIC USES
	Epinephrine	α ₄ , α ₂ β ₁ , β ₂	Acute asthma Anaphylactic shock In local anesthetics to increase duration of action
	Norepinephrine	α ₁ , α ₂ β ₁	Treatment of shock
	Isoproterenol	β1, β2	As a cardiac stimulant
CATECHOLAMINES Rapid onset of action Brief duration of action Not administered orally	Dopamine	Dopaminergic α ₁ ,β ₁	Treatment of shock Treatment of congestive heart failure Raise blood pressure
Do not penetrate the blood- brain barrier	Dobutamine	βι	Treatment of acute heart failure
	Oxymetazoline	α ₁	As a nasal decongestant
	Phenylephrine	Ci 1	As a nasal decongestant Raise blood pressure Treatment of paroxysmal supraventricular tachycardia
	Clonidine	σ ₂	Treatment of hypertension
NONCATECHOL-	Albuterol Terbutaline	β2	Treatment of bronchospasm (short acting)
AMINES Compared to catecholamines:	Salmeterol Formoterol	β2	Treatment of bronchospasm (long acting)
Longer duration of action All can be administered orally or via inhalation	Amphetamine	α, β, CNS	As a CNS stimulant in treatment of children with attention deficit syndrome, narcolepsy, and for appetite control
	Ephedrine Pseudoephedrine	α, β, CNS	As a nasal decongestant Raise blood pressure 42

Summary

Thank You

Dr. Sarah Adil

